
// Smart Contract Security Assessment 02.05.2025 - 02.07.2025

Treasury Vesting
SolanaForg

Prepared by: HALBORN

Last Updated 02/19/2025

Date of Engagement: February 5th, 2025 - February 7th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
1 2

CRITICAL
1

HIGH
0

MEDIUM
5

LOW
3

INFORMATIONAL
3

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 No token distribution in batchrelease due to premature state updates
7.2 Total amount limit can be bypassed during allocations

1 0 0%

T r e a s u r y Ve st i n g - SolanaForg

7.3 Missing access control on token release functions
7.4 Cleanup reverts for pause/unpause approvals
7.5 Double-counting in multi-signature approval for users with multiple roles
7.6 Operator approvals equal to admin approvals
7.7 Timelock operations without expiry
7.8 Missing category validation
7.9 Initializer not disabled
7.10 Insu!cient validation of vesting duration
7.11 Centralization risks
7.12 Redundant constants

8. Automated Testing

1 . I n t r o d u c t i o n

 engaged Halborn to conduct a security assessment on smart contracts beginning
on February 5th, 2025 and ending on February 7th, 2025. The security assessment was
scoped to the smart contracts provided to the Halborn team. Commit hashes and further
details can be found in the Scope section of this report.

2 . A s s e s s m e n t S u m m a r y

The team at Halborn dedicated 3 days for the engagement and assigned one full-time security
engineer to evaluate the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert with advanced
penetration testing, smart-contract hacking, and deep knowledge of multiple blockchain
protocols

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

In summary, Halborn identified some improvements to reduce the likelihood and impact of
risks, which were all addressed by the . The main ones were the following:

Implement Correct logic for token distribution
Ensure accurate accounting for multi sig approvals
Strengthening validation during token allocation
Implement proper access control on release functions.
Add an expiry mechanism to time-lock operations.
Add explicit category validation at the start of the executeAddCategory

function.
Disable the initializer in the implementation contract.

SolanaForg team

SolanaForg

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual, semi-automated and automated security testing
to balance e!ciency, timeliness, practicality, and accuracy regarding the scope of this
assessment. While manual testing is recommended to uncover flaws in logic, process, and
implementation; automated testing techniques help enhance coverage of the code and can
quickly identify items that do not follow security best practices. The following phases and
associated tools were used throughout the term of the assessment:

Research into architecture and purpose.
Smart contract manual code review and walk-through.
Manual assessment of use and safety for the critical Solidity variables and functions in

scope to identify any vulnerability classes
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions. (Slither)
Local deployment and testing (Foundry)

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and
a Severity Coe!cient. This system is inspired by the industry standard Common Vulnerability
Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and
technical means by which vulnerabilities can be exploited and Impact describes the
consequences of a successful exploit.

The Severity Coe!cients is designed to further refine the accuracy of the ranking with two
factors: Reversibility and Scope. These capture the impact of the vulnerability on the
environment as well as the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding
to the highest security risk. This provides an objective and accurate rating of the severity of
security vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their
level of risk to address the most critical issues in a timely manner.

4444. 1 E X P L O I T A B I L I T Y. 1 E X P L O I T A B I L I T Y. 1 E X P L O I T A B I L I T Y. 1 E X P L O I T A B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a
single transaction on the relevant blockchain. Includes but is not limited to financial and
computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

ME

Exploitability is calculated using the following formula:

4444. 2 I M P A C T. 2 I M P A C T. 2 I M P A C T. 2 I M P A C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the
contract due to a successfully exploited vulnerability. Confidentiality refers to limiting access
to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to
the trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact
directly affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a
successfully exploited vulnerability. This metric refers to smart contract features and
functionality, not state. Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

E

E = m∏ e

MI

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4444. 3 S E V E R I T Y C O E F F I C I E N T. 3 S E V E R I T Y C O E F F I C I E N T. 3 S E V E R I T Y C O E F F I C I E N T. 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For
upgradeable contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other
contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

I

I = max(m) +I 4
m − max(m)∑ I I

C

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coe!cient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

r

s

C

C = rs

S

S = min(10, EIC ∗ 10)

Informational 0 - 1.9

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository:

(b) Assessed Commit ID: V2

(c) Items in scope:

contracts/TreasuryVesting.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

V6
V3
V5

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL
1

HIGH
0

MEDIUM
5

LOW
3

INFORMATIONAL
3

SolanaForg Private Repository

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

NO TOKEN DISTRIBUTION IN BATCHRELEASE
DUE TO PREMATURE STATE UPDATES

CRITICAL
SOLVED -

02/19/2025

TOTAL AMOUNT LIMIT CAN BE BYPASSED
DURING ALLOCATIONS

MEDIUM
SOLVED -

02/13/2025

MISSING ACCESS CONTROL ON TOKEN
RELEASE FUNCTIONS

MEDIUM
SOLVED -

02/13/2025

CLEANUP REVERTS FOR PAUSE/UNPAUSE
APPROVALS

MEDIUM
SOLVED -

02/19/2025

DOUBLE-COUNTING IN MULTI-SIGNATURE
APPROVAL FOR USERS WITH MULTIPLE ROLES

MEDIUM
SOLVED -

02/19/2025

OPERATOR APPROVALS EQUAL TO ADMIN
APPROVALS

MEDIUM
SOLVED -

02/19/2025

TIMELOCK OPERATIONS WITHOUT EXPIRY LOW
SOLVED -

02/13/2025

MISSING CATEGORY VALIDATION LOW
SOLVED -

02/13/2025

INITIALIZER NOT DISABLED LOW
SOLVED -

02/13/2025

INSUFFICIENT VALIDATION OF VESTING
DURATION

INFORMATIONAL
SOLVED -

02/13/2025

CENTRALIZATION RISKS INFORMATIONAL
SOLVED -

02/13/2025

REDUNDANT CONSTANTS INFORMATIONAL
SOLVED -

02/19/2025

7 . F I N D I N G S & T EC H D E TA I L S

7.1 N O TO K E N D I ST R I B U T I O N I N BATC H R E L E AS E D U E
TO P R E M AT U R E STAT E U P DAT ES

// CRITICAL

Description
In the batchRelease() function of TreasuryVesting , currently separates state updates
and token transfers into two separate loops, following the checks-effects-interactions pattern.

// Current implementation// Current implementation
functionfunction batchReleasebatchRelease((bytes32bytes32 category category,, addressaddress[[]] calldatacalldata users users)) externalexternal {{

 //...//...

 // First loop: Updates state// First loop: Updates state
 forfor ((uint256uint256 i i == 00;; i i << users users..lengthlength;; i i++++)) {{
 uint256uint256 releasable releasable == getReleasableAmountgetReleasableAmount((usersusers[[ii]],, category category));; // Returns X tokens// Returns X tokens
 ifif ((releasable releasable >> 00)) {{
 userReleased userReleased[[usersusers[[ii]]]][[categorycategory]] +=+= releasable releasable;; // Updates state// Updates state
 categoryVestings categoryVestings[[categorycategory]]..released released +=+= releasable releasable;;
 totalReleased totalReleased +=+= releasable releasable;;
 processed processed++++;;
 }}
 }}

 // Second loop: Attempts transfers// Second loop: Attempts transfers
 forfor ((uint256uint256 i i == 00;; i i << users users..lengthlength;; i i++++)) {{
 uint256uint256 releasable releasable == getReleasableAmountgetReleasableAmount((usersusers[[ii]],, category category));; // Returns 0 because state was updated// Returns 0 because state was updated
 ifif ((releasable releasable >> 00)) {{ // This condition is never true// This condition is never true
 bdagToken bdagToken..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, users users[[ii]],, releasable releasable));;
 }}
 }}

 //...//...

}}

However, this implementation causes the second loop's getReleasableAmount() calls to
return 0 since the state has already been updated in the first loop, resulting in no tokens being
transferred to users.

Proof of Concept
Add the following test function in the foundry test file:

 functionfunction test_BatchReleasetest_BatchRelease(()) publicpublic {{
 test_AddEarlyBirdCategorytest_AddEarlyBirdCategory(());;

 // Setup allocations// Setup allocations
 vm vm..startPrankstartPrank((operatoroperator));;
 treasuryVesting treasuryVesting..allocateTokensallocateTokens((user1user1,, treasuryVesting treasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(()),, 1000e181000e18));;

 treasuryVesting treasuryVesting..allocateTokensallocateTokens((user2user2,, treasuryVesting treasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(()),, 2000e182000e18));;
 vm vm..stopPrankstopPrank(());;

 addressaddress[[]] memorymemory users users == newnew addressaddress[[]]((22));;
 users users[[00]] == user1 user1;;
 users users[[11]] == user2 user2;;

 vm vm..startPrankstartPrank((adminadmin));;
 treasuryVesting treasuryVesting..batchReleasebatchRelease((treasuryVestingtreasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(()),, users users));;
 vm vm..stopPrankstopPrank(());;
 assertEqassertEq((tokentoken..balanceOfbalanceOf((user1user1)),, 1000e181000e18));;
 assertEqassertEq((tokentoken..balanceOfbalanceOf((user2user2)),, 2000e182000e18));;
 }}

Output:

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:C/I:H/D:N/Y:L (10.0)

Recommendation
Combine the state updates and token transfers into a single loop to ensure that tokens are
properly distributed:

functionfunction batchReleasebatchRelease((bytes32bytes32 category category,, addressaddress[[]] calldatacalldata users users))
 externalexternal
 onlyRoleonlyRole((ADMIN_ROLEADMIN_ROLE))
 nonReentrant nonReentrant
 whenNotPaused whenNotPaused
{{

 requirerequire((usersusers..length length >> 00,, "Empty users array""Empty users array"));;
 requirerequire((usersusers..length length <=<= MAX_BATCH_SIZE MAX_BATCH_SIZE,, "Batch too large""Batch too large"));;

 emitemit BatchReleaseStartedBatchReleaseStarted((categorycategory,, users users..lengthlength,, block block..timestamptimestamp));;

 uint256uint256 totalReleased totalReleased;;
 uint256uint256 processed processed;;

 forfor ((uint256uint256 i i == 00;; i i << users users..lengthlength;; i i++++)) {{
 uint256uint256 releasable releasable == getReleasableAmountgetReleasableAmount((usersusers[[ii]],, category category));;
 ifif ((releasable releasable >> 00)) {{
 userReleased userReleased[[usersusers[[ii]]]][[categorycategory]] +=+= releasable releasable;;
 categoryVestings categoryVestings[[categorycategory]]..released released +=+= releasable releasable;;
 totalReleased totalReleased +=+= releasable releasable;;
 processed processed++++;;
 bdagToken bdagToken..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, users users[[ii]],, releasable releasable));;
 }}
 }}

 emitemit BatchReleaseCompletedBatchReleaseCompleted((categorycategory,, totalReleased totalReleased,, processed processed,, block block..timestamptimestamp));;
}}

Remediation
SOLVED: The suggested mitigation was implemented by the BlockDAG team.

Remediation Hash
V6

7. 2 TOTA L A M O U N T L I M I T CA N B E BY PAS S E D D U R I N G
A L LO CAT I O N S

// MEDIUM

Description
The allocateTokens function in the TreasuryVesting contract contains a vulnerability
that allows operators to allocate more tokens than the category's total amount limit. This
occurs because the check that's meant to enforce the category limit uses
vesting.released , which is never updated during token allocation or release, making the
limit check ineffective.

functionfunction allocateTokensallocateTokens((addressaddress user user,, bytes32bytes32 category category,, uint256uint256 amount amount)) externalexternal {{
 // ...// ...
 requirerequire((vestingvesting..released released ++ amount amount <=<= vesting vesting..totalAmounttotalAmount,, "Exceeds category limit""Exceeds category limit"));;
 // vesting.released is never updated, always remains 0// vesting.released is never updated, always remains 0
 // ...// ...
}}

The vulnerability allows unlimited token allocations within a category, bypassing the intended
total amount limit. This could lead to:

More tokens being allocated than intended by the protocol
Potential insolvency if more tokens are promised than available
Breaking of tokenomics and vesting schedules
Loss of funds if the contract doesn't have enough tokens to cover all allocations

Proof of Concept
Here's a test function proving that token allocations can exceed total amount:

functionfunction test_ExceedCategoryLimittest_ExceedCategoryLimit(()) publicpublic {{
 // Setup category with 1000e18 total amount limit// Setup category with 1000e18 total amount limit
 uint256uint256[[]] memorymemory releaseSteps releaseSteps == newnew uint256uint256[[]]((11));;
 uint256uint256[[]] memorymemory timeSteps timeSteps == newnew uint256uint256[[]]((11));;
 releaseSteps releaseSteps[[00]] == 1000010000;;
 timeSteps timeSteps[[00]] == 00;;

 vm vm..startPrankstartPrank((adminadmin));;
 bytes32bytes32 operationId operationId == keccak256keccak256((
 abi abi..encodeencode((
 treasuryVesting treasuryVesting..OPERATION_ADD_CATEGORYOPERATION_ADD_CATEGORY(()),,
 treasuryVesting treasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(()),,
 block block..timestamptimestamp,,
 00,,
 1000e181000e18,,
 releaseSteps releaseSteps,,
 timeSteps timeSteps
))
));;

 treasuryVesting treasuryVesting..scheduleAddCategoryscheduleAddCategory((
 treasuryVesting treasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(()),,
 block block..timestamptimestamp,,
 00,,
 1000e181000e18,,
 releaseSteps releaseSteps,,
 timeSteps timeSteps
));;

 vm vm..warpwarp((blockblock..timestamp timestamp ++ treasuryVesting treasuryVesting..TIMELOCK_DURATION_ADD_CATEGORYTIMELOCK_DURATION_ADD_CATEGORY(())));;
 treasuryVesting treasuryVesting..executeAddCategoryexecuteAddCategory((operationIdoperationId));;
 vm vm..stopPrankstopPrank(());;

 vm vm..startPrankstartPrank((operatoroperator));;
 // Allocate maximum amount to first user// Allocate maximum amount to first user
 treasuryVesting treasuryVesting..allocateTokensallocateTokens((user1user1,, treasuryVesting treasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(()),, 1000e181000e18));;

 // Should fail but succeeds: allocate same amount to second user// Should fail but succeeds: allocate same amount to second user
 treasuryVesting treasuryVesting..allocateTokensallocateTokens((user2user2,, treasuryVesting treasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(()),, 1000e181000e18));;
 vm vm..stopPrankstopPrank(());;

 // Verify total allocated amount exceeds limit// Verify total allocated amount exceeds limit
 uint256uint256 totalAllocated totalAllocated == treasuryVesting treasuryVesting..getAllocationgetAllocation((user1user1,, treasuryVesting treasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(()))) ++
 treasuryVesting treasuryVesting..getAllocationgetAllocation((user2user2,, treasuryVesting treasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(())));;
 assertEqassertEq((totalAllocatedtotalAllocated,, 2000e182000e18));; // Double the intended limit// Double the intended limit
}}

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:H/D:H/Y:N (6.3)

Recommendation
Replace the current check with a tracking mechanism for total allocations.

Remediation
SOLVED: The BlockDAG team solved this issue as follows:

Adds proper tracking of total allocations via totalAllocated
Changes the limit check to use total allocations instead of released amounts
Updates the running total when new allocations are made
Maintains the same check in both single and batch allocation functions

Remediation Hash
V3

7. 3 M I S S I N G AC C ES S C O N T RO L O N TO K E N R E L E AS E
F U N C T I O N S

// MEDIUM

Description
The releaseTokens and batchRelease functions lack access control, allowing anyone to
release tokens:

functionfunction releaseTokensreleaseTokens((
 addressaddress user user,,
 bytes32bytes32 category category
)) externalexternal nonReentrant whenNotPaused nonReentrant whenNotPaused returnsreturns ((uint256uint256))

functionfunction batchReleasebatchRelease((
 bytes32bytes32 category category,,
 addressaddress[[]] calldatacalldata users users
)) externalexternal nonReentrant whenNotPaused nonReentrant whenNotPaused

This implementation does not follow the intention as stated in the provided documentation:

3.3 Admin-Only Release

The admin triggers batch release for each category after verifying the correct vesting
stage has arrived.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:H/D:H/Y:N (6.3)

Recommendation
Add appropriate access control to both release functions.

Remediation
SOLVED: The solved this issue as follows:

Adds the onlyRole(ADMIN_ROLE) modifier to both functions
Ensures only authorized admins can trigger token releases
Maintains existing nonReentrant and pause checks
Aligns with the requirement for admin-only releases

Remediation Hash
V3

7. 4 C L E A N U P R EV E RTS FO R PAU S E / U N PAU S E
A P P ROVA L S

// MEDIUM

Description
The TreasuryVesting contract implements two different patterns for handling operations.
While standard operations (like adding categories) use a structured TimelockOperation
system with proper expiry and cleanup mechanisms, emergency operations (pause/unpause)
use a simplified direct hashing approach.

// Emergency operations use direct hashing// Emergency operations use direct hashing
bytes32bytes32 pauseOperationId pauseOperationId == keccak256keccak256(("EMERGENCY_PAUSE""EMERGENCY_PAUSE"));;

SolForg team

// While standard operations use TimelockOperation struct// While standard operations use TimelockOperation struct
structstruct TimelockOperationTimelockOperation {{
 bytes32bytes32 operationId operationId;;
 uint256uint256 executeTime executeTime;;
 uint256uint256 expiryTime expiryTime;;
 boolbool executed executed;;
 bytesbytes encodedParams encodedParams;;
}}

This inconsistency prevents the cleanup function from working properly for emergency
operations, as they don't exist in the timelockOperations mapping.
Impact:

Stale pause/unpause approvals remain in the system
The approval state doesn't get reset after execution
This could lead to confusion and potential security issues if old approvals are reused

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:H/D:N/Y:L (5.9)

Recommendation

Standardize the operation handling:

Use the same timelock and operation ID pattern for all operations including
pause/unpause

Include pause/unpause in the standard operation types

Reset approval states after execution:

Clear approvals after successful pause/unpause
Implement proper cleanup for all operation types

Add proper expiry mechanism for pause/unpause operations

Remediation
SOLVED: The suggested mitigation was implemented by the BlockDAG team - Use the same
timelock and operation ID pattern for all operations including pause/unpause

Remediation Hash
V5

7. 5 D O U B L E- C O U N T I N G I N M U LT I - S I G N AT U R E
A P P ROVA L FO R U S E RS WI T H M U LT I P L E RO L ES

// MEDIUM

Description
In TreasuryVesting::approveOperation() function, when a user with both ADMIN_ROLE
and OPERATOR_ROLE approves an operation, both approval counters are incremented,
effectively giving them two votes from a single address.

functionfunction approveOperationapproveOperation((bytes32bytes32 operationId operationId)) externalexternal {{
 requirerequire((hasRolehasRole((ADMIN_ROLEADMIN_ROLE,, msg msg..sendersender)) |||| hasRolehasRole((OPERATOR_ROLEOPERATOR_ROLE,, msg msg..sendersender)),, "Not authorized""Not authorized"));;

 MultiSigApproval MultiSigApproval storagestorage approval approval == multiSigApprovals multiSigApprovals[[operationIdoperationId]];;
 requirerequire((!!approvalapproval..hasApprovedhasApproved[[msgmsg..sendersender]],, "Already approved""Already approved"));;
 requirerequire((!!approvalapproval..executedexecuted,, "Operation already executed""Operation already executed"));;

 approval approval..hasApprovedhasApproved[[msgmsg..sendersender]] == truetrue;;

 // Issue: Both counters increment if user has both roles// Issue: Both counters increment if user has both roles
 ifif ((hasRolehasRole((ADMIN_ROLEADMIN_ROLE,, msg msg..sendersender)))) {{
 approval approval..adminApprovalCountadminApprovalCount++++;;
 }}
 ifif ((hasRolehasRole((OPERATOR_ROLEOPERATOR_ROLE,, msg msg..sendersender)))) {{
 approval approval..operatorApprovalCountoperatorApprovalCount++++;;
 }}

 emitemit MultiSigApprovalSubmittedMultiSigApprovalSubmitted((
 operationId operationId,, msg msg..sendersender,, approval approval..adminApprovalCountadminApprovalCount,, approval approval..operatorApprovalCountoperatorApprovalCount
));;
}}

This undermines the security of the multi-signature system by allowing users with multiple
roles to have disproportionate voting power.

Proof of Concept
Add the following to the foundry test file:

 // Test multi-sig approval tracking// Test multi-sig approval tracking
 functionfunction test_MultiSigApprovalTrackingtest_MultiSigApprovalTracking(()) publicpublic {{
 uint256uint256[[]] memorymemory releaseSteps releaseSteps == newnew uint256uint256[[]]((11));;
 uint256uint256[[]] memorymemory timeSteps timeSteps == newnew uint256uint256[[]]((11));;
 releaseSteps releaseSteps[[00]] == 1000010000;;
 timeSteps timeSteps[[00]] == 00;;

 vm vm..startPrankstartPrank((adminadmin));;
 bytes32bytes32 operationId operationId == keccak256keccak256((
 abi abi..encodeencode((
 treasuryVesting treasuryVesting..OPERATION_ADD_CATEGORYOPERATION_ADD_CATEGORY(()),,
 treasuryVesting treasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(()),,
 block block..timestamptimestamp,,
 100000e18100000e18,,
 releaseSteps releaseSteps,,

 timeSteps timeSteps
))
));;

 treasuryVesting treasuryVesting..scheduleAddCategoryscheduleAddCategory((
 treasuryVesting treasuryVesting..EARLY_BIRD_CATEGORYEARLY_BIRD_CATEGORY(()),, block block..timestamptimestamp,, 100000e18100000e18,, releaseSteps releaseSteps,, timeSteps timeSteps
));;

 // Track admin approvals// Track admin approvals
 treasuryVesting treasuryVesting..approveOperationapproveOperation((operationIdoperationId));;
 ((uint256uint256 adminCount adminCount,, uint256uint256 operatorCount operatorCount,,,,)) == treasuryVesting treasuryVesting..multiSigApprovalsmultiSigApprovals((operationIdoperationId));;
 assertEqassertEq((adminCountadminCount,, 11));;
 assertEqassertEq((operatorCountoperatorCount,, 00));;
 vm vm..stopPrankstopPrank(());;

 // Track operator approvals// Track operator approvals
 vm vm..prankprank((operatoroperator));;
 treasuryVesting treasuryVesting..approveOperationapproveOperation((operationIdoperationId));;
 ((adminCountadminCount,, operatorCount operatorCount,,,,)) == treasuryVesting treasuryVesting..multiSigApprovalsmultiSigApprovals((operationIdoperationId));;
 assertEqassertEq((adminCountadminCount,, 11));;
 assertEqassertEq((operatorCountoperatorCount,, 11));;
 }}

Output:
The assertions fail, proving the failing integrity of approval counts.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:H/D:N/Y:N (5.9)

Recommendation
Modify the approval logic to use mutually exclusive conditions, ensuring a user can only
increment one counter even if they have multiple roles:

functionfunction approveOperationapproveOperation((bytes32bytes32 operationId operationId)) externalexternal {{
 requirerequire((hasRolehasRole((ADMIN_ROLEADMIN_ROLE,, msg msg..sendersender)) |||| hasRolehasRole((OPERATOR_ROLEOPERATOR_ROLE,, msg msg..sendersender)),, "Not authorized""Not authorized"));;

 MultiSigApproval MultiSigApproval storagestorage approval approval == multiSigApprovals multiSigApprovals[[operationIdoperationId]];;
 requirerequire((!!approvalapproval..hasApprovedhasApproved[[msgmsg..sendersender]],, "Already approved""Already approved"));;
 requirerequire((!!approvalapproval..executedexecuted,, "Operation already executed""Operation already executed"));;

 approval approval..hasApprovedhasApproved[[msgmsg..sendersender]] == truetrue;;

 // Fix: Mutually exclusive conditions prevent double counting// Fix: Mutually exclusive conditions prevent double counting
 ifif ((hasRolehasRole((ADMIN_ROLEADMIN_ROLE,, msg msg..sendersender)))) {{
 approval approval..adminApprovalCountadminApprovalCount++++;;
 }} elseelse ifif ((hasRolehasRole((OPERATOR_ROLEOPERATOR_ROLE,, msg msg..sendersender)))) {{
 approval approval..operatorApprovalCountoperatorApprovalCount++++;;
 }}

 emitemit MultiSigApprovalSubmittedMultiSigApprovalSubmitted((
 operationId operationId,, msg msg..sendersender,, approval approval..adminApprovalCountadminApprovalCount,, approval approval..operatorApprovalCountoperatorApprovalCount
));;
}}

Remediation
SOLVED: The suggested mitigation was implemented by BlockDAG team.

Remediation Hash
V6

7. 6 O P E R ATO R A P P ROVA L S EQ UA L TO A D M I N
A P P ROVA L S

// MEDIUM

Description
The current implementation doesn't distinguish between operator and admin approvals in the
approveOperation function. Both operators and admins contribute to the same approval
count, which could lead to security risks.

functionfunction approveOperationapproveOperation((bytes32bytes32 operationId operationId)) externalexternal {{
 requirerequire((hasRolehasRole((ADMIN_ROLEADMIN_ROLE,, msg msg..sendersender)) |||| hasRolehasRole((OPERATOR_ROLEOPERATOR_ROLE,, msg msg..sendersender)),, "Not authorized""Not authorized"));;

 MultiSigApproval MultiSigApproval storagestorage approval approval == multiSigApprovals multiSigApprovals[[operationIdoperationId]];;
 requirerequire((!!approvalapproval..hasApprovedhasApproved[[msgmsg..sendersender]],, "Already approved""Already approved"));;
 requirerequire((!!approvalapproval..executedexecuted,, "Operation already executed""Operation already executed"));;

 approval approval..hasApprovedhasApproved[[msgmsg..sendersender]] == truetrue;;
 approval approval..approvalCountapprovalCount++++;; // Both operator and admin approvals increment the same counter// Both operator and admin approvals increment the same counter
}}

Impact:

Operators could potentially contribute to admin-level operations
The system doesn't properly enforce the separation between

REQUIRED_ADMIN_SIGNATURES (3) and REQUIRED_OPERATOR_SIGNATURES (2)
This could lead to unauthorized execution of sensitive operations

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:H/D:N/Y:L (5.4)

Recommendation
Separate the approval tracking for operators and admins:

Add separate counters for admin and operator approvals
Validate the appropriate threshold based on the operation type
Implement proper role-based approval counting

Remediation
SOLVED: Separate counters for admin and operator approvals were implemented by the
BlockDAG team.

Remediation Hash
V5

7.7 T I M E LO C K O P E R AT I O N S WI T H O U T E X P I RY
// LOW

Description
Timelock operations don't have an expiration time, allowing them to be executed
indefinitely after the timelock period:

 structstruct TimelockOperationTimelockOperation {{
 bytes32bytes32 operationId operationId;; // Unique identifier for the operation// Unique identifier for the operation
 uint256uint256 executeTime executeTime;; // When the operation can be executed// When the operation can be executed
 boolbool executed executed;; // Whether operation has been completed// Whether operation has been completed
 bytesbytes encodedParams encodedParams;; // Encoded function parameters// Encoded function parameters
 }}

This means old operations could be executed long after they become irrelevant.

BVSS

AO:A/AC:M/AX:M/R:N/S:U/C:N/A:L/I:M/D:M/Y:N (3.1)

Recommendation
Add expiration time to TimelockOperation struct:

structstruct TimelockOperationTimelockOperation {{
 bytes32bytes32 operationId operationId;;
 uint256uint256 executeTime executeTime;;
 uint256uint256 expiryTime expiryTime;;
 boolbool executed executed;;
 bytesbytes encodedParams encodedParams;;
}}

Remediation
SOLVED: Added expiration time to TimelockOperation struct.

Remediation Hash
V3

7. 8 M I S S I N G CAT EG O RY VA L I DAT I O N
// LOW

Description
The executeAddCategory function in the TreasuryVesting contract allows the creation of
arbitrary categories without validating if they match one of the predefined category types
(EARLY_BIRD_CATEGORY, PRESALE_CATEGORY, or TEAM_CATEGORY). While the function includes
specific validation logic for known categories, it doesn't prevent the creation of undefined
categories:

functionfunction executeAddCategoryexecuteAddCategory((bytes32bytes32 operationId operationId)) externalexternal onlyRoleonlyRole((ADMIN_ROLEADMIN_ROLE)) {{
 // ... decode parameters ...// ... decode parameters ...

 // Category-specific validations// Category-specific validations
 ifif ((category category ==== EARLY_BIRD_CATEGORY EARLY_BIRD_CATEGORY)) {{
 // Early Bird validations// Early Bird validations
 }}
 elseelse ifif ((category category ==== PRESALE_CATEGORY PRESALE_CATEGORY)) {{
 // Presale validations// Presale validations
 }}
 elseelse ifif ((category category ==== TEAM_CATEGORY TEAM_CATEGORY)) {{
 // Team validations// Team validations
 }}
 // No else clause to prevent undefined categories// No else clause to prevent undefined categories

Impact:

Allows creation of non-standard vesting categories
Could lead to confusion in token distribution
Inconsistent vesting rules across the protocol

BVSS

AO:A/AC:M/AX:M/R:N/S:U/C:N/A:L/I:L/D:M/Y:N (2.8)

Recommendation
Add explicit category validation at the start of the function:

functionfunction executeAddCategoryexecuteAddCategory((bytes32bytes32 operationId operationId)) externalexternal onlyRoleonlyRole((ADMIN_ROLEADMIN_ROLE)) {{
 TimelockOperation TimelockOperation storagestorage operation operation == timelockOperations timelockOperations[[operationIdoperationId]];;
 requirerequire((operationoperation..operationId operationId !=!= bytes32bytes32((00)),, "Operation doesn't exist""Operation doesn't exist"));;
 requirerequire((!!operationoperation..executedexecuted,, "Already executed""Already executed"));;
 requirerequire((blockblock..timestamp timestamp >=>= operation operation..executeTimeexecuteTime,, "Timelock not expired""Timelock not expired"));;

 operation operation..executed executed == truetrue;;

 // Decode operation parameters// Decode operation parameters
 ((
 bytes32bytes32 category category,,
 uint256uint256 start start,,
 uint256uint256 duration duration,,
 uint256uint256 totalAmount totalAmount,,
 uint256uint256[[]] memorymemory releaseSteps releaseSteps,,
 uint256uint256[[]] memorymemory timeSteps timeSteps
)) == abi abi..decodedecode((
 operation operation..encodedParamsencodedParams,,
 ((bytes32bytes32,, uint256uint256,, uint256uint256,, uint256uint256,, uint256uint256[[]],, uint256uint256[[]]))
));;

 // Add explicit category validation// Add explicit category validation
 requirerequire((
 category category ==== EARLY_BIRD_CATEGORY EARLY_BIRD_CATEGORY ||||
 category category ==== PRESALE_CATEGORY PRESALE_CATEGORY ||||
 category category ==== TEAM_CATEGORY TEAM_CATEGORY,,
 "Invalid category type""Invalid category type"
));;

 // Rest of the function...// Rest of the function...
}}

Remediation
SOLVED: The BlockDAG team solved this issue as follows:

Added explicit validation of category types at the start
Maintains all existing category-specific validations
Ensures only predefined categories can be created
Keeps the error message clear and descriptive

Remediation Hash
V3

7. 9 I N I T I A L I Z E R N OT D I SA B L E D
// LOW

Description
The TreasuryVesting contract is designed to be used with the proxy pattern, as evidenced
by its inheritance of Initializable and use of the initialize() function. However, the
contract does not disable the initializer in its constructor, leaving it vulnerable to potential
initialization attacks:

contractcontract TreasuryVestingTreasuryVesting isis
 Initializable Initializable,,
 AccessControlUpgradeable AccessControlUpgradeable,,
 ReentrancyGuardUpgradeable ReentrancyGuardUpgradeable,,
 PausableUpgradeable PausableUpgradeable
{{

 functionfunction initializeinitialize((
 addressaddress admin admin,,
 addressaddress _bdagToken _bdagToken
)) publicpublic initializer initializer {{
 // ... initialization logic ...// ... initialization logic ...
 }}
}}

BVSS

AO:A/AC:M/AX:M/R:N/S:U/C:N/A:L/I:L/D:M/Y:N (2.8)

Recommendation
Add a constructor that disables initializers:

contractcontract TreasuryVestingTreasuryVesting isis
 Initializable Initializable,,
 AccessControlUpgradeable AccessControlUpgradeable,,
 ReentrancyGuardUpgradeable ReentrancyGuardUpgradeable,,
 PausableUpgradeable PausableUpgradeable
{{
 /// @custom:oz-upgrades-unsafe-allow constructor/// @custom:oz-upgrades-unsafe-allow constructor
 constructorconstructor(()) {{
 _disableInitializers_disableInitializers(());;
 }}

 functionfunction initializeinitialize((
 addressaddress admin admin,,
 addressaddress _bdagToken _bdagToken
)) publicpublic initializer initializer {{
 // ... rest of initialization logic ...// ... rest of initialization logic ...
 }}
}}

This ensures that the implementation contract cannot be initialized directly, following the
proper proxy pattern implementation.

Remediation
SOLVED:

Adds the constructor with _disableInitializers()
Includes the OpenZeppelin annotation for upgrades safety
Maintains all existing initialization logic

Prevents potential reinitialization attacks
Follows best practices for upgradeable contracts

Remediation Hash
V3

7.1 0 I N S U F F I C I E N T VA L I DAT I O N O F V EST I N G
D U R AT I O N

// INFORMATIONAL

Description
The getReleasableAmount function in the TreasuryVesting contract appears to lack
validation for the duration field. However, this is not a security concern as the token release
schedule is effectively controlled by the releaseSteps and timeSteps arrays, which are
properly validated during category creation:

functionfunction getReleasableAmountgetReleasableAmount((addressaddress user user,, bytes32bytes32 category category)) publicpublic viewview returnsreturns ((uint256uint256)) {{
 CategoryVesting CategoryVesting storagestorage vesting vesting == categoryVestings categoryVestings[[categorycategory]];;
 ifif ((blockblock..timestamp timestamp << vesting vesting..startstart)) returnreturn 00;;

 uint256uint256 allocation allocation == userAllocations userAllocations[[useruser]][[categorycategory]];;
 uint256uint256 totalReleased totalReleased == userReleased userReleased[[useruser]][[categorycategory]];;
 uint256uint256 releasable releasable == 00;;

 // Release schedule is controlled by timeSteps// Release schedule is controlled by timeSteps
 forfor ((uint256uint256 i i == 00;; i i << vesting vesting..timeStepstimeSteps..lengthlength;; i i++++)) {{
 ifif ((blockblock..timestamp timestamp >=>= vesting vesting..start start ++ vesting vesting..timeStepstimeSteps[[ii]])) {{
 releasable releasable +=+= ((allocation allocation ** vesting vesting..releaseStepsreleaseSteps[[ii]])) // 1000010000;;
 }}
 }}

 returnreturn releasable releasable >> totalReleased totalReleased ?? releasable releasable -- totalReleased totalReleased :: 00;;
}}

Impact:

Code readability and maintainability could be improved
duration field in CategoryVesting struct is effectively redundant
Minor gas cost for storing unused duration value

BVSS

AO:A/AC:M/AX:M/R:N/S:U/C:N/A:L/I:L/D:L/Y:N (1.7)

Recommendation
Consider removing the redundant duration field or using it for validation.

Remediation
SOLVED: Removed the redundant duration field.

Remediation Hash
V3

7.1 1 C E N T R A L I Z AT I O N R I S KS
// INFORMATIONAL

Description
TreasuryVesting contract relies heavily on admin and operator roles for critical functions.
Therefore it creates single points of failure if admin/operator keys are compromised.

BVSS

AO:A/AC:M/AX:M/R:N/S:U/C:N/A:L/I:L/D:L/Y:N (1.7)

Recommendation
It is recommended to implement multi-signature requirements for admin/operator actions.

Remediation
SOLVED: The BlockDAG team solved this issue as follows:

Requires multiple signatures for admin and operator actions
Tracks approvals per operation
Clears approvals after execution
Emits events for transparency
Maintains existing role-based access control

Remediation Hash
V3

7.1 2 R E D U N DA N T C O N STA N TS
// INFORMATIONAL

Description
The following constants in the TreasuryVesting contract are not used:

bytes32bytes32 publicpublic constantconstant OPERATION_UPDATE_SCHEDULE OPERATION_UPDATE_SCHEDULE == keccak256keccak256(("UPDATE_SCHEDULE""UPDATE_SCHEDULE"));;
bytes32bytes32 publicpublic constantconstant OPERATION_PAUSE OPERATION_PAUSE == keccak256keccak256(("OPERATION_PAUSE""OPERATION_PAUSE"));;
bytes32bytes32 publicpublic constantconstant OPERATION_UNPAUSE OPERATION_UNPAUSE == keccak256keccak256(("OPERATION_UNPAUSE""OPERATION_UNPAUSE"));;

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
It is recommended to remove them for code clarity and maintainability.

Remediation
SOLVED: The suggested mitigation was implemented.

Remediation Hash
V6

8 . AU TO M AT E D T EST I N G

I n t r o d u c t i o n
Halborn used automated testing techniques to enhance the coverage of certain areas of the
smart contracts in scope. Among the tools used was Slither, a Solidity static analysis
framework. After Halborn verified the smart contracts in the repository and was able to
compile them correctly into their ABIs and binary format, Slither was run against the
contracts. This tool can statically verify mathematical relationships between Solidity variables
to detect invalid or inconsistent usage of the contracts' APIs across the entire code-base.
The security team conducted a comprehensive review of findings generated by the Slither
static analysis tool. No major issues were found. The issue related to reentrancy is a false
positive as the external call is made to a trusted contract.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is
crucial for maintaining the project’s integrity and addressing potential vulnerabilities introduced by code
modifications.

© Halborn 2025. All rights reserved.

